A pitot tube ( ; also pitot probe) measures fluid flow velocity. It was invented by French engineer Henri Pitot during his work with aqueducts and published in 1732, and modified to its modern form in 1858 by Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry.
The measured stagnation pressure cannot just by itself be used to determine the fluid flow velocity (airspeed in aviation) directly. However, with a measured static pressure as well it can be determined by the use of Bernoulli's equation which states:
Which can also be written
Solving that for flow velocity gives
where
This equation applies only to fluids that can be treated as incompressible. Liquids are treated as incompressible under almost all conditions. Gases under certain conditions can be approximated as incompressible. See Compressibility.
The dynamic pressure is the difference between the stagnation pressure and the static pressure. The dynamic pressure is then determined using a diaphragm inside an enclosed container. If the air on one side of the diaphragm is at the static pressure, and the other at the stagnation pressure, then the deflection of the diaphragm is proportional to the dynamic pressure.
In aircraft, the static pressure can be measured using on the side of the fuselage. The dynamic pressure measured can be used to determine the indicated airspeed of the aircraft. The diaphragm arrangement described above can be contained within the airspeed indicator, which can convert the dynamic pressure to an airspeed reading by means of mechanical levers.
Instead of separate pitot and static ports, a pitot-static tube (also called a Prandtl tube) may be employed, which has a second tube coaxial with the pitot tube with holes on the sides, outside the direct airflow, to measure the static pressure. "How Aircraft Instruments Work." Popular Science, March 1944, pp. 116.
If a liquid column manometer is used to measure the pressure difference ,
Therefore,
Several commercial airline incidents and accidents have been traced to a failure of the pitot-static system. Examples include Austral Líneas Aéreas Flight 2553, Northwest Airlines Flight 6231, Birgenair Flight 301 and one of the two X-31s. The French air safety authority BEA said that pitot tube icing was a contributing factor in the crash of Air France Flight 447 into the Atlantic Ocean. In 2008 Air Caraïbes reported two incidents of pitot tube icing malfunctions on its A330s.
Birgenair Flight 301 had a fatal pitot tube failure which investigators suspected was due to insects creating a nest inside the pitot tube; the prime suspect is the black and yellow mud dauber wasp.
Aeroperú Flight 603 had a fatal pitot-static system failure due to the cleaning crew leaving the static port blocked with tape.
The fluid flow rate in a duct can then be estimated from:
In aviation, airspeed is typically measured in knots.
In weather stations with high wind speeds, the pitot tube is modified to create a special type of anemometer called pitot tube static anemometer.
In many modern carburetors a Pitot tube at the intake is fed to the fuel float chamber as an alternative to feeding ambient air pressure there to better control air/fuel ratio.
|
|